In recent years, utility plant owners have been investigating opportunities and strategies to bring intelligence into substations to enable smart grid paradigm. In a typical digitalized substation, it is obvious to see robust embedded computing gateways with high-performance compute, networking and storage have been integrated to enable control and monitoring of substations. Intelligent HMIs (human-machine interfaces) terminals and protocol-authenticating servers are used to enable communications. All these have contributed to the increasing complexity and footprint of SCADA management in substations.

The introduction of smart grid has revolutionized the conventional approaches of electrical grids in supplying and distributing electricity. Smart grid offers enhanced data communication and automation for power grid so that data regarding power generation and distribution can be collected and analyzed in a near real-time synchronization. Besides the technological benefits, smart grid offers the visibility of all the integrated subsystems and provides predictive information to the control center. The convergence helps critical infrastructure owner to save operating and capital expense.

 

With advancements in technology, the role of school buses has become more and more comprehensive, from merely transporting children to security incorporated vehicles. In fact, location-based tracking, attendance assurance and real-time video surveillance of both interior and exterior of the vehicle are among the most discussed requirements for school bus safety, due to risks regarding behavioral concerns of drivers and students while in transit. With the safety concerns in mind, educational organizations are adopting security technologies in their school buses to provide visibility of drivers and children, as well as the GPS/RFID tracking system to keep track of bus/student footprints.

In order to accommodate the escalating growth of data on the Internet, the networking infrastructure has undergone a revolutionizing transformation to redefine network compute and topology, in order to enhance bandwidth and reduce latency, while keeping operational expense in check. Meanwhile, the trends of IoT/IIoT, 5G, edge cloud and MEC (multi-access edge computing) have driven enterprises to migrate applications from the cloud to the edge. However, some edge computing devices are still based on traditional hardware will one day be inadequate to enable or maintain multi-Tbps QoE (quality of experience) and QoS (quality of service), and eventually additional expenses will arise. Thus, enterprises shall seek long-run, programmable instead of fixed interconnect technologies to enable intelligent and high-performance network traffic for MEC infrastructure.

The growing use of mobile devices at work has contributed to the transformation of enterprise networks. One of the first dynamic trend was BYOD (bring your own device) as this concept offered significant economical benefits for enterprises. However, there are security and compatibility challenges. Therefore, VDI (virtual desktop infrastructure) has emerged to address new challenges in enterprise networking.

Hyperscalability enables seamless system resource management, provisioning and distribution by integrating networking and compute resources in a software-defined system. A healthy and robust system must be built on such hyperscalability in order to combine storage, compute, and virtualization layers of an infrastructure into a single system architecture.

With the fast-evolving pace of today’s networking landscape, organizations are seeking more economical and efficient ways to deliver their applications and services to their targets. Indeed, application delivery has drastically changed in its forms since the widespread of smart mobile devices. Therefore, organizations have to enhance the centralized management in their data centers in order to cope with the ever-rising in bandwidth demand without excessive expenses.

페이지 20 / 전체 46