Gun-related violence presents an escalating threat to public safety, emphasizing the urgent need for faster detection and response to minimize casualties. Traditional security systems reliant on human monitoring or reactive alerts often face delays in response times, increasing the risk of harm.

As 5G networks evolve, they enable ultra-low latency, faster speeds, and massive device connectivity. However, traditional CPU-based systems have struggled to handle computationally intensive virtualized Radio Access Network (vRAN) functions, creating bottlenecks in performance. To address these challenges, integrating AI at the edge—where data processing is closer to the source—has become essential. AI-accelerated infrastructure optimizes latency and bandwidth usage while supporting critical network requirements such as software-programmable Network Operating Systems (NOS) for RAN operations.

With the growing reliance on Generative AI and Large Language Models (LLMs) across industries, organizations are increasingly focusing on secure, high-performance, and cost-effective AI solutions. However, centralizing LLM training and inferencing in the cloud introduces challenges, including data privacy risks, high transmission costs, latency issues, and dependence on constant cloud communication. The demand for edge-based AI infrastructure is rising as enterprises seek to harness AI capabilities while maintaining control over sensitive data.

Lanner has deployed its Edge AI appliances, the LEC-2290E and EAI-I731, at its manufacturing facility in Taipei, Taiwan, to upgrade the Automated Optical Inspection (AOI) system on its Surface Mount Technology (SMT) production line.

AI-powered computer vision is revolutionizing safety in manufacturing by enabling real-time detection of hazardous situations. These advanced systems offer unparalleled vigilance, ensuring proper PPE usage and monitoring complex interactions between workers, machinery, and vehicles. As AI technology continues to evolve, these systems will become even more accurate and adaptable, identifying subtle signs of danger before accidents occur.

Ensuring the safety of students and staff in schools has become increasingly challenging. Despite the presence of surveillance cameras, the sheer volume of footage makes it impractical for staff to manually review all video to identify incidents or suspicious activities. Immediate threats like on-campus conflicts, vandalism, and unauthorized access require quick, effective responses.

In conventional retail settings, manual checkout processes often lead to long queues, resulting in reduced overall store efficiency and frustrated customers experiencing decreased satisfaction. Additionally, traditional checkout methods may be prone to errors and inefficiencies, further exacerbating the shopping experience.

페이지 1 / 전체 3